Friday, May 30th 2014 CalGeo Expo @ UCLA

"Centrifuge Experiments to Investigate Levee Deformation Potential in the Sacramento-San Joaquin Delta"

Riccardo Cappa & Samuel Yniesta

OVERVIEW

• Introduction of the Delta

- \circ Construction of the Levees
- Seismic Hazard
- Consequences of levee failure

• Project

- Objectives of the Project
- Research Program

• Centrifuge Test of a Clayey Levee

- Model Construction
- Testing
- Preliminary Results

• Centrifuge Test of a Sandy Levee

- \circ Testing
- Preliminary Results
- Future Work and Summary

Photo by Ian Kluft

Photo courtesy of Roy Tennant

FUTURE WORK

INTRODUCTION

PROJECT

CLAYEY LEVEE

SANDY LEVEE

DELTA LOCATION

INTRODUCTION PROJECT CLAYEY LEVEE SANDY LEVEE FUTURE WORK

DELTA LOCATION

INTRODUCTION PROJECT CLAYEY LEVEE SANDY LEVEE FUTURE WORK

HOW DID THE DELTA CHANGE?

- 1880's <u>v</u> reclamation started <u>v</u> levees were raised
- Beginning of a subsidence process due to:
 - Mechanical settling
 - Land burning
 - Erosion
 - Oxidation
 - Decomposition
 - Shrinking

Clamshell Dredge Building a Levee – [SFEI, 2012]

Evolution of Delta islands due to levee construction and island subsidence - [Subsidence, sea level rise, and seismicity in the Sacramento-San Joaquin Delta, Mount and Twiss, 2005]

INTRODUCTION PROJECT CLAYEY LEVEE SANDY LEVEE FUTURE WORK

SUBSIDENCE IN THE DELTA

INTRODUCTION

PROJECT

CLAYEY LEVE

SANDY LEVEE

SUBSIDENCE IN THE DELTA

Freeboard can be as low as 50 cm Not flood control levees

INTRODUCTION

PROJECT

CLAYEY LEVE

SANDY LEVEE

SUBSIDENCE IN THE DELTA

INTRODUCTION

PROJECT

CLAYEY LEVE

SANDY LEVEE

IMPORTANCE OF DELTA

Public Impact of the Delta:

- Agribusiness => Delta Agricultural Economy: approx. \$0.5 billion / yr.
- Ecosystem => unique and sensitive, fresh/salt water
- Recreation & Tourism => over 3,000 jobs, \$100 million in labor income and \$175 million in value added to the regional economy (Economic Sustainability Plan for the Sacramento -San Joaquin Delta, pg. 147)
 Water Distribution System => hub of CSWP and CVP, water to 25

million people

http://adunnphotography. blogspot.com/2012_08_01 _archive.html

INTRODUCTION

PROJECT

CLAYEY LEVEE

SANDY LEVEE

WHEN A LEVEE FAILS...

- Upper Jones tract (2004)
- \$50 million to repair, and over \$200 million in total losses
- Over a year to be repaired
- Water distribution system momentarily shut down

http://www.nbcnews.com/id/30088454/ns/us_news-environm ent/t/two-calif-rivers-listed-most-endangered/#.UdugVW205Ew

INTRODUCTION

PROJECT

CLAYEY LEVEE

SANDY LEVEE

PEAT DEFORMABILITY

CLAYEY LEVEE

Peat has unique characteristics:

- High water content (w= 400-800%)
- Low unit weight ($\gamma = 10-12 \text{ KN/m}^3$)
- Small shear wave velocity ($V_s = 25 \text{ m/s}$)

PROJECT

• High organic content (oc ~ 64%)

Transverse section of a peat fiber at x800 – [Secondary Compression of Peat with or without Surcharging, Mesri et al., 1999]

FUTURE WORK

High Settlements and Low Strength

SANDY LEVEE

[Shafiee et al., 2007]

INTRODUCTION

PEAT RESPONSE

Ground motions can be amplified by peat

ΙΝΤ		ווח	CTI	
	TO I			

CLAYEY LEVEE

SANDY LEVEE

FAULT SYSTEM IN THE DELTA

PROJECT

INTRODUCTION

Seismic risk controlled by:

- 6.5-7.0 M earthquakes
- Nearby faults

Major and Minor Faults in the Delta – [Seismic Hazard in the Sacramento-San Joaquin Delta, CDWR, 1980]

FUTURE WORK

SANDY LEVEE

100 & 500 YEAR RETURN PERIOD (Y.R.P.) SCENARIOS

0.4 g PGA for 500
 y.r.p. (DRMS,2009)

INTRODUCTION

PROJECT

CLAYEY LEVEE

SANDY LEVEE

POSSIBLE DISASTER

Multiple Failures Y "BIG GULP" Y Salinity Intrusion Y Reduced water exports Y \$ 40 billion in economic losses (DRMS, 2009)

Levees ⇔ Earthquakes Y little understanding

<u>Our project</u>: "NEESR: Levees and Earthquakes: Averting an Impending Disaster"

INTRODUCTION PROJ	ECT CLAYEY LEVE	EE SANDY LEVEE	FUTURE WORK
-------------------	-----------------	----------------	-------------

PREVIOUS WORK

•Ted Reinert: Field Test of Model Levee on Sherman Island

•Ali Shafiee: Lab Testing of Peat, Seismic Deformation Potential

•Dong Yeop Kwak: Fragility Functions of Levees in Japan

•Also involved: Sean Ahdi, Seema Barua, Pavlo Chrysovergis, Rob Moss, Yi Tyan Tsai

Field test of a levee

INTRODUCTION PROJECT CLAYEY LEVEE SANDY LEVEE FUTURE WORK	INTRODUCTION	PROJECT	CLAYEY LEVEE	SANDY LEVEE	FUTURE WORK
---	--------------	---------	--------------	-------------	-------------

PROJECT TEAM

UCI – Civil and Environmental Engineering Department:

- Professor Anne Lemnitzer
- Riccardo Cappa, Graduate Student

UCLA – Civil and Environmental Engineering Department:

- Professor Scott Brandenberg
- Professor Jonathan Stewart
- Samuel Yniesta, Graduate Student

University of Bristol, UK – Civil Engineering Department:

• Professor George Mylonakis

Special thanks to:

Bahareh Heidarzadeh, NEES@UCDavis team: Anatoliy Ganchenko, Chad Justice, Tom Kohnke, Lars Pedersen, Peter Rojas, Dan Wilson

Project Funding: NSF Award #1208170 (July 2012)

INTRODUCTION	PROJECT	CLAYEY LEVEE	SANDY LEVEE	FUTURE WORK
--------------	---------	--------------	-------------	-------------

OBJECTIVES OF THE PROJECT

CLAYEY LEVEE

Peat – points of interest:

- post-cyclic volume change potential in peat
- cyclic pore pressure development in the peat
- levee-peat interaction

INTRODUCTION

Levee – points of interest:

- Investigation of the liquefaction potential of the levee
- Development of an analysis framework for levee response

PROJECT

0.67686

FUTURE WORK

step 273 Smooth Contour Fill (Mean) of SoilStresses, maxShearStress. Deformation (x100): Displacement of GiD Output, step 273.

SANDY LEVEE

RESEARCH PROGRAM

INTRODUCTION

PROJECT

LAYEY LEVE

SANDY LEVEE

Slide courtesy of UC Davis

INTRODUCTION

PROJECT

CLAYEY LEVE

SANDY LEVEE

Slide courtesy of UC Davis

INTRODUCTION

PROJECT

CLAYEY LEVE

SANDY LEVEE

About 57 g, 76 RPM, 160 MPH

The centrifugal force increases the "weight" of the model to simulate weight of full scale Civil Structures

Slide courtesy of UC Davis

CLAYEY LEVEE

SANDY LEVEE

FUTURE WORK

Slide courtesy of UC Davis

INTRODUCTION

- Soil strength and stiffness depend on effective stress
- Increased gravity increases the weight of the model and increases the stresses
- •Stresses in the reduced scale model are equivalent to those in a full scale prototype
- •Relationship between model and prototype:

$$\frac{g_p}{g_m} = \frac{1}{N}$$
$$\sigma^* = \frac{\sigma_p}{\sigma_m} = 1$$

Quantity	Prototype Dimension /Model Dimension
Dynamic Time	N/1
Dynamic Frequency	1/N
Displacement, Length	N/1
Velocity	1/1
Acceleration, Gravity	1/N
Force	N ² /1
Pressure, Stress	1/1
Diffusion time	N ² /1
Mass	N ³ /1

Kutter et al. (1992) http://nees.ucdavis.edu/principles.php

FUTURE WORK

PROJECT

CLAYEY LEVEE

SANDY LEVEE

LARGE SCALE 9m RADIUS INVESTIGATIONS

PHASE 1 - CLAYEY LEVEE:

- Ground motions and sine sweeps
- Peat seismic performance
 - Wave propagation
 - Strains
 - Pore pressures

PROJECT	CLAYEY LEVEE	SANDY LEVEE	FUTURE WORK
	PROJECT	PROJECT CLAYEY LEVEE	PROJECT CLAYEY LEVEE SANDY LEVEE

TARGET DIMENSIONS FOR RCK01

Prototype Dimensions (target)

Peat Layer Thickness:11 mLevee Height:5 m

Model Dimensions (target in flight)

PROJECT

Peat Layer Thickness:19.3 cmLevee Height:8.8 cm

Target Acceleration => 57 g

<u>Containe</u>	<u>r Geometry</u>
Length:	1.76 m
width :	0.91 m
Height:	0.54 m

INTRODUCTION

MODEL CONSTRUCTION

Sand layer on top of the peat:

- Consolidation of peat
- Increased bearing capacity
- Peat settled by 5cm (14%)

FUTURE WORK

Time lapse of the first stage => 5 weeks before spinning

INTRODUCTION

PROJECT

CLAYEY LEVEE

SANDY LEVEE

VERTICAL STRAINS RECORDS

Slow data (1Hz) during first stage RCK02

Settlement during second large scale investigation RCK02 for the first clayey levee phase

INTRODUCTION

PROJECT

CLAYEY LEVEE

SANDY LEVEE

RPM

LARGE VERTICAL STRAINS

Settlements during spinning => vertical strains of 40 %

1 g condition

57 g condition

Video 3 – Time Lapse Spinning Down from 57 g to 1 g

	<u> </u>			
RI				
<u> </u>	\smile			

PROJECT

CLAYEY LEVEE

SANDY LEVEE

GROUND MOTION IN FLIGHT

Model vs. Prototype Scale

Video 4a,b – Slow motion 0.6g PBA ground motion on the clayey levee

	INTRODUCTION	PROJECT	CLAYEY LEVEE	SANDY LEVEE	FUTURE WORK
--	--------------	---------	--------------	-------------	-------------

ACCELEROMETERS' RECORDS

Compare response:

- Peat base
- Free field
- Levee Crest

8

Amplification Factor

WORK

INTRODUCTION	PROJECT	CLAYEY LEVEE	SANDY LEVEE	FUTUR

INTRODUCTION	PROJECT	CLAYEY LEVEE	SANDY LEVEE	FUTURE WORK
--------------	---------	--------------	-------------	-------------

LARGE SCALE 9m RADIUS INVESTIGATIONS

PHASE 2 – SANDY LEVEE:

- Levee deformation potential
- Target 0.4 g PBA
 - Liquefaction of the levee fill
 - Deformations

INI					N I -	
	KI					
		$ \ge $	<u> </u>			

PROJECT

CLAYEY LEVEE

SANDY LEVEE

TARGET 0.4 PBA KOBE MOTION

Liquefaction of the sandy levee is a real threat

Video 5 and 6 – Target 0.4g PBA Ground Motion on Sandy Levee

INT			OTI	
	KU	DU		UN

PROJECT

CLAYEY LEVEE

SANDY LEVEE

LIQUEFACTION OF THE LEVEE

Liquefaction of the sandy levee is a real threat

Records in Prototype Scale

INTRODUCTION	PROJECT	CLAYEY LEVEE	SANDY LEVEE	FUTURE WORK

SUMMARY AND CONCLUSION

- 0.4 g PGA is expected for 500 y.r.p => "Big Gulp" would jeopardize the state economy
- Centrifuge testing provides insights on S.S.I. and cyclic behavior of peaty soils
- Centrifuge testing shows a potential for levee liquefaction
- More analysis to come...

NTRODUCTION	PROJECT	CLAYEY LEVEE	SANDY LEVEE	FUTURE WORK
-------------	---------	--------------	-------------	-------------

FUTURE WORK

- Data analysis:
 - Analyze the response of the peat during earthquakes
 - Analyze the post seismic behavior of the peat

• Numerical simulations:

- Create a constitutive model for peat
- Observe the influence of different parameter variations
- Make comparisons between lab testing, field testing, centrifuge testing and numerical simulations

• Eventual application of our research:

- Develop an analysis framework to evaluate the stress demands under the levee and estimate the probability of failure
- Develop fragility functions and risk map for levees in the delta

NITRODI	
NIKUDI	JCHON

PROJECT

CLAYEY LEVEE

SANDY LEVEE

HISTORY OF THE DELTA

QUESTION TIME!

Thanks!

DIICTI	

PROJECT

CLAYEY LEVEE

SANDY LEVEE