GREENFIELD GEOTECHNICAL

Liquefaction case histories at strong motion recording sites

MIKE GREENFIELD, PE, PHD

Liquefaction case histories

- Past research has focused on binary observation of surficial manifestation of liquefaction
 - Seed and Idriss (1971) compiled 35 case histories
 - Cetin et al. (2004) compile 108 case histories
 - Cetin et al. (2018) 113 case histories
 - Kayen et al. (2013) compiled 287 case histories
 - NGL Project may include hundreds more
- However, there have been limited observations of the impact of liquefaction on ground motions
 - Boulanger and Idriss (2010) database includes 5
 - Gingery et al. (2014) identified 19 ground motions that were affected by liquefaction

Case histories in the NGL database

18 sites 4 sites $1964 M_{w} = 7.6 Niigata Earthquake$ 1968 $M_w = 8.3$ Tokachi-Oki Earthquake 1979 $M_w = 6.5$ Imperial Valley Earthquake 1983 $M_{w} = 7.8$ Nihonkai-Chubu 1987 $M_{w} = 6.5$ Superstition Hills Earthquake 1989 $M_w = 6.9$ Loma Prieta Earthquake 1993 $M_w = 7.6$ Kushiro-Oki Earthquake 1995 $M_{\rm w} = 6.9$ Kobe Earthquake life Liquefaction Array Sale 2000 $M_{w} = 6.6$ Western Tottori Earthquake nds Corner Kobe J 2003 $M_w = 8.3$ Tokachi-Oki Earthquake 2011 $M_{w} = 9.1$ Tohoku Earthquake

Recorded motions that have been affected by liquefaction have great value

- Directly measure intensity of shaking at the ground surface
- Isolate ground motions before and after liquefaction is triggered
- Observe the effects of liquefaction on ground motions
- Identify liquefaction without requiring surficial manifestation
 - Identify liquefaction where reconnaissance is not possible
 - Clarify questionable case histories
 - Databases already incorporate this approach
 - Treasure Island and Kushiro Port case histories

Example 1 – Kawagishi-cho Apartment Buildings 1964 $M_w = 7.6$ Niigata earthquake

Example 1 – Kawagishi-cho Apartment Buildings

1964 $M_w = 7.6$ Niigata earthquake

Ground motion shift

- High-frequency at the early part of the record
- Low-frequency after about 10 seconds

Time-frequency analysis of ground motions

Time-frequency analysis of ground motions

Example 1 – Kawagishi-cho Apartment Buildings

Example 1 – Kawagishi-cho Apartment Buildings

Example 1 – Kawagishi-cho Apartment Buildings

Example 2 - Kushiro Port

The recording station at Kushiro Port is on native sand just outside of filled area

Example 2 - Kushiro Port

Downhole accelerograph at 77 m deep

Example 2 - Kushiro Port Three very strong earthquakes

USGS ShakeMap : Shikotan Island, Russia Det 4, 1994 13:22:07 UTC M.B.3 N43.83 E147.33 Depth: 33.3 km ID:19941004132267

PGA = 0.225 g

USGS ShakeMap : Hokkaido, Japan region

2003 Tokachi-oki $M_w = 8.3$ PGA = 0.413 g

Example 2 - Kushiro Port

1993 M_w = 7.6 Kushiro-Oki Earthquake. Downhole record

Modal frequency is consistently around 6 Hz

Example 2 - Kushiro Port

1993 M_w = 7.6 Kushiro-Oki Earthquake

Shift in frequency content confirms liquefaction

Example 2 - Kushiro Port

1994 M_w = 8.3 Hokkaido Toho-Oki Earthquake

Example 2 - Kushiro Port

2003 M_w = 8.3 Tokachi-Oki Earthquake

- Shift in fragueney content may indicate liquef
- Shift in frequency content may indicate liquefaction

80

Example 3 - IBRH20 2011 M_w = 9.1 Tohoku earthquake

Example 3 - IBRH20

Example 4 - MYG013

The MYG013 recording station is at a fire station in Sendai

Example 4 - MYG013 2011 M_w = 9.1 Tohoku earthquake

Example 4 - MYG013

2011 M_w = 9.1 Tohoku earthquake

Example 4 - MYG013

2011 $M_w = 9.1$ Tohoku earthquake

Why the very strong pulses?

Example 4 - MYG013

Numerical analyses in FLIP

Example 4 - MYG013

Numerical analyses in FLIP

Example 4 - MYG013

Numerical analyses in FLIP

Strong dilation pulses at the ground surface

1.0

Summary

Recorded ground motions affected by liquefiable soils have unique value

- Isolate the soil behavior before and after liquefaction is triggered
 - Kawagishi-cho
- Identify liquefaction without requiring surficial manifestation
 - Kushiro Port
- Clarify questionable case histories
 - IBRH20
- Understand behavior of liquefiable soil
 - MYG013

More case histories to investigate

At least 12 more well-known

Harbor Island

