PEER NGL Sept 2018 UCLA

OOO CPT "Legacy" Case Histories Dath Eric C Mass Ph. D. DE EASCE

Robb Eric S. Moss, Ph.D., P.E., F.ASCE

Previous PEER Funded Work:

SPT, CPT, V_S

Liquefaction (Denali, Alaska)

Robb Moss, Fugro

Foundation Failure (Kocaeli, Turkey)

Dam Failure (Bhuj, India)

"Lifelines" Failure (Denali, Alaska)

Key Elements of Soil Liquefaction Engineering

Evaluation of *In Situ* Resistance to Triggering of Cyclic Liquefaction

Two Basic Approaches:

Data Source

LEGACY EVENTS EVALUATED:

1999 Kocaeli, Turkey 1999 Chi-Chi, Taiwan 1995 Dinar, Turkey 1995 Kobe, Japan 1994 Northridge, USA 1992 Erzincan, Turkey 1989 Loma Prieta, USA 1988 Saguenay, Canada 1987 Edgecumbre, New Zealand 1987 Superstition Hills, USA 1987 Elmore Ranch, USA 1983 Nihonkai-Chubu, Japan 1983 Borah Peak, USA 1981 Westmorland, USA 1980 Mexicali, Mexico 1979 Imperial Valley, USA 1977 Vrancea, Romania 1976 Tangshan, China 1975 Haicheng, China 1971 San Fernando, USA 1968 Inanguahua, New Zealand 1964 Niigata, Japan

LEGACY SUMMAY

Moss (2003) - worldwide CPT database

- 139 liquefied and
- 43 nonliquefied cases recorded from
- 18 different earthquakes spanning 5 decades.

Reinvestigations of:

- 1979 Imperial Valley, 1981 Westmoreland, 1987 Superstition Hills (Moss et al. 2005)
- 1976 Tangshan (Moss et al., 2011)

Total = 146 + 54

Objective vs. Subjective - gray areas and nuances and correlations and

What constitutes a "Good" case history:

- detailed observations of ground failure or non-failure that is both relative and global
- well quantified ground shaking (low CoV)
- well quantified water table (other than CPTu)
- modern CPT measurements (non-trivial in other countries)
- multiple measurements of critical layer(s)
- co-located with SPT and V_S (downhole)
- consideration of spatial variability/correlation
- other: ageing, thin/thick layer, deformations, severity, timing, confining layer, fines/plasticity, ...

	Earthqu Magnitu Locatio Referer Nature
e History Statistics	Comme
<u>µ</u>	
<u></u>	
D	
(layer specific)	

uake:	1989 Loma Prieta
ude:	M _s =7.1
on: nces: of Failure:	Alameda Bay Farm Island (Dike Location) Mitchell et al. (1994), Kayen & Mitchell (1997) No failure, DDC improved site.

iments: Western portion consists of sandy Hydraulic fill, underlain by bay mud and deeper stiffer soil.

Liquefaction occurred along the western and northern sections of the island.

Deep Dynamic Compaction was performed in the western perimeter dike to prevent liquefaction.

PGA was recorded at 0.27 & 0.21 at the Alameda Naval Air Station.

stdev

0.89

Correlated with SPT from Cetin et al. (2000) Corrected water table from 97 reference.

0.15

				Summary of Data: Stress		Strength	
	Cone Penetration Friction Rat Resistance (%) (MPa)	io Pore Pressure Ratio	Standard Penetration Soil Profile Resistance (blows/tt)	Liquefied Data Class	Ν	Soil Class	SP-SM
6L Danth (m)	(in b)	Critical Layer (m)	5 to 6	D ₅₀ (mm)	0.28		
		Median Depth (m)	5.50	%Fines	7		
				st.dev.	0.17	%PI	
		1111	1 1	Depth to GWT (m)	2.50		
			*****	st.dev.	0.30		
		1 1 1 1	4 6 1 1 1 7 1 4 1	σ _v (kPa)	103.75	q _c (MPa)	7.10
			E San	st.dev.	4.23	st.dev.	2.70
			1 <u> </u>	•• σ _v ' (kPa)	74.32	f _s (kPa)	152.37
		1 1 1 1		st.dev.	3.56	st.dev.	25.35
	»+		\$ €	a _{max} (g)	0.24	norm. exp.	0.34
			900001 End of boring	st.dev.	0.02	C _q , C _f	1.11
				r _d	0.95	C _{thin}	1.00
				st.dev.	0.09	f _{s1} (kPa)	168.54
	0 10 20 30 40 0 2 4	6 -1 0 1	2 0 10 20 30 40 50 60	Corrected Magnitude	7.00	st.dev.	28.04
	Water Table at F.F.m.		st.dev.	0.12	q _{c1} (MPa)	7.85	
L	Water Table at 5.5 m			- CSR _{eq}	0.16	st.dev.	2.98
	Figure 53: Cone and Standard Penetrat	ion Resistance Logs at Al	ameda Bay Farm Island (Dike Location)	st.dev.	0.03	R _{f1} (%)	2.15

C.O.V._{CSR}

Data Screening and Vetting

Class A

- 1. Original CPT trace with q_c and f_s/R_f , using a ASTM D3441 & D5778 spec. cone.
- 2. No thin layer correction required
- 3. $\delta_{\text{CSR}} \leq 0.20$

Class B

- 1. Original CPT trace with q_c and f_s/R_f , using a ASTM D3441 & D5778 spec. cone.
- 2. Thin layer correction required.
- $3. \quad 0.20 < \delta_{CSR} \le 0.35$

Class C

- 1. Original CPT trace with q_c and f_s/R_f , but using a non-standard cone (e.g. Chinese cone or mechanical cone).
- 2. No sleeve data but $FC \le 5\%$ (i.e. "clean" sand).
- 3. $0.35 < \delta_{CSR} \le 0.50$

Class D

1. Not satisfying the criteria for Classes A, B, or C.

Expert Panel Review

Data

Data points passing the screening and vetting process (class A,B, & C)

Modeling

$$M_w=7.5 \sigma_v$$
'=1 atm

NORMALIZATION

Ticino Sand, Baldi et al. (1981)

Olsen (1995)

$$q_{c,1} = q_c \cdot C_q$$
$$C_q = \left(\frac{P_a}{\sigma_v'}\right)^c$$
$$f_{s,1} = f_s \cdot C_f$$
$$C_f = \left(\frac{P_a}{\sigma_v'}\right)^s$$

Olsen & Mitchell (95)

Theoretical Approaches for Predicting Cone and/or Sleeve Resistance

- Bearing Capacity
- <u>Cavity Expansion</u>
- Strain Path
- <u>Steady State</u>
- Discrete Element

Calibrated and Utilized to Predict Resistance as a Function of Pressure and D_r, K_o, and OCR.

Iterative Normalization Procedure

$$c = f_1 \cdot \left(\frac{R_f}{f_3}\right)^f$$

where $f_1 = x_1 \cdot q_c^{x_2}$ $f_2 = -(y_1 \cdot q_c^{y_2} + y_3)$ $f_3 = abs(\log(10 + qc))^{z_1}$

Other Processing Issues Addressed

- ✓ thin layer correction
- \checkmark screening for other failure mechanisms
- ✓ pre- vs. post-event CPT measurements
- \checkmark non-linear shear mass participation (r_d)
- magnitude-correlated duration weighting (DWF_M)
- ✓ "fines" adjustment

PROBABILISTIC METHODOLOGY

$$CSR = \frac{\tau_{avg}}{\sigma'_{v}} = 0.65 \cdot \frac{\ddot{u}_{\max}}{g} \cdot \frac{\sigma_{v}}{\sigma'_{v}} \cdot r_{d}$$

Cone Penetration Test

Optimized Model

 $g = q_{c,1}(1+\theta_1 R_f) + (1+\theta_2 R_f) + c(1+\theta_3 R_f) - \theta_4 \ln(CSR) - \theta_5 \ln(M_w) - \theta_6 \ln(\sigma_v') - \theta_7 + \varepsilon$

Accounting for Model Error
$$g(q_{c1}, CSR, \theta, \varepsilon) = \hat{g}(q_{c1}, CSR, \theta) + \varepsilon$$
 $\varepsilon = N(0, \sigma_{\varepsilon})$

Accounting for Parameter Uncertainty $g(Q, S, \theta, \varepsilon) = \hat{g}(Q, S, \theta) + \varepsilon$ $Q = q_{c1} + e_{q_{c1}}$ $e_{q_{c1}} = N(0, \sigma_{q_{c1}})$ $S = \ln(CSR) + e_{\ln(CSR)}$ $e_{\ln(CSR)} = N(0, \sigma_{\ln(CSR)})$

BAYESIAN UPDATING

Bayes' Rule
$$f(\Theta) = c \cdot L(\Theta) \cdot p(\Theta)$$

Posterior distribution $f(\Theta)$ Likelihood function $L(\Theta)$ Prior distribution (non-informative) $p(\Theta)$ Normalizing constant $c = [\int L(\Theta) \cdot p(\Theta) \cdot d(\Theta)]^{-1}$

Application -- Estimating Model Parameters

RELIABILITY ANALYSIS

probability of liquefaction = summation of the probabilities of all possible combinations of parameters that will define liquefaction

 $P[\hat{g}(Q,S,\theta) + \varepsilon \leq 0] = \int_{\hat{g}(Q,S,\theta) + \varepsilon \leq 0} \varphi(\varepsilon | \sigma_{\varepsilon}) \cdot f(\theta,\sigma_{\varepsilon}) \cdot d\varepsilon \cdot d\theta \cdot d\sigma_{\varepsilon}$

MVFOSM FORM SORM Monte Carlo Simulation

CORRELATION

Equivalent Clean Sand

$$M_w=7.5 \sigma_v=1$$
 atm

Comparison with other studies (deterministic and probabilistic)

$$\mathbf{q}_{\mathrm{c},1,\mathrm{mod}} = \mathbf{q}_{\mathrm{c},1} + \Delta \mathbf{q}_{\mathrm{c},1}$$

 M_w =7.5 σ_v '=1 atm P_L =20%

Note: $R_f \le 0.5\%$ is an equivalent clean sand

Proposed correction

 $\boldsymbol{q}_{c,1,mod} \!\!=\!\! \boldsymbol{q}_{c,1} \!\!+ \boldsymbol{\Delta} \boldsymbol{q}_{c,1}$

Robertson's correction

$$q_{c,1,cs} = K_c \cdot q_{c,1}$$

"Fines" Adjusted

 $P_L=20\%$ $M_w=7.5$ σ_v '=1 atm

Note: $Rf \le 0.5\%$ is an equivalent clean sand

Probabilistic Liquefaction Triggering Correlations for the CPT and SPT at M_w =7.5 and σ_v '=1 atm.

Deterministic Liquefaction Triggering Correlations for the CPT and SPT at M_w =7.5 and σ_v '=1 atm.

