

SSA-LACSC joint conference, Seismology of the Americas March 15 2018 Miami (FL)

NGL: An Open Source Global Database for Next-Generation of Liquefaction Assessment

Paolo Zimmaro, Ph.D.

Research Scientist and Lecturer University of California Los Angeles

Civil and Environmental Engineering

Engineering Sustainable Infrastructure for the Future

SSA-LACSC joint conference, Seismology of the Americas March 15 2018 Miami (FL)

Acknowledgements

Co-authors

Dongyoup Kwak (Hanyang University, South Korea)

Jonathan P. Stewart (UCLA)

Scott J. Brandenberg (UCLA)

Funding Agencies

Project Co-PIs and collaborators

Steven L. Kramer (U. Washington)

Yousef Bozorgnia (UCLA)

Tom Shantz (Cal Trans) and Thomas Weaver (NRC)

Onder Cetin (METU), Robb Moss (Cal Poly SLO) Kevin Franke (BYU)

Sjoerd Van Ballegooy and Mike Liu (Tonkin & Taylor, NZ)

Jon Bray and Christine Beyzaei (UC Berkeley)

Russell Green and Kristin Ulmer (Virginia Tech)

John Stamatakos, Miriam Juckett, Joey Mukherjee, and Zazkary Murphy (SwRI)

Many other US and international collaborators...

UCLA undergraduate and graduate students

- Liquefaction assessment: Needs and current situation
- The Next-Generation Liquefaction Project (NGL) Vision
- Flatfiles vs Relational Databases
- The NGL Database
- Final Remarks

Liquefaction assessment: Needs and current situation

Steps in liquefaction risk assessment (three-step approach):

- 1. Susceptibility
- 2. Triggering (Factor of safety and/or probability of liquefaction)
- 3. Effects (consequences)

Each is *empirical* or *semi-empirical*, and hence is reliant on available data.

Liquefaction Assessment: Current Needs

Small data sets

A few sites are especially consequential

Existing data sets are necessarily incomplete, especially:

Depth > 10 m

M > 7.5 and **M** < 6.0

FC > 30%

CSR > 0.4

From Idriss and Boulanger (2010)

Liquefaction Assessment: Present Situation

Alternate liquefaction models provide different outcomes.

Why?

- 1. Inconsistent data sets
- 2. Different methods for data interpretation
- 3. Different models for extrapolation beyond data range
- 4. Potential errors in data analysis
- 5. Minimal between-developer interaction

- Liquefaction
- No Ground Failure

Graphic: S. Kramer

The NGL Project Vision

• Community field **case-history** *relational* **database**

• Supporting studies of critical effects poorly constrained by data

• Model development: team meetings, common resources, required parameter space

The NGL Project Vision

• Community field **case-history** *relational* database

• Supporting studies of critical effects poorly constrained by data

• Model development: team meetings, common resources, required parameter space

Flatfiles vs Relational Databases

From spreadsheet (flatfiles) (Traditional data analysis)

		Epicentral	Epicentral				
Event Name	Magnitude	Latitude	Longitude	Station Name	V _{S30} (m/s)	R _{jb} (km)	PGA (g)
Westwood Hills	6.3	34.0689	118.4452	Factor Building	380	2	0.84
Westwood Hills	6.3	34.0689	118.4452	Santa Monica Courthouse	215	14	0.28
Hollywood Valley	7.2	34.1027	118.3404	Factor Building	380	20	0.61
Hollywood Valley	7.2	34.1027	118.3404	Santa Monica Courthouse	215	30	0.32

Relationships set through shared fields (keys) Primary key: unique identifier for each record

Foreign key: field in one table that identifies a record in another table

Benefits of relational databases:

Smart database (query, advanced tools) Minimize duplicated fields Avoid null fields

To relational database (big-data analytics)

<mark>⊙⊐</mark> ⊚⊐	Primary Key Foreign Kev	Event table						
<mark>0</mark> =E	event_id	Event Nam	e Ma	agnitude	Epicentr Latitude	al I e I	Epicentr Longitud	al de
	1 2	Westwood H Hollywood Va	ills illey	6.3 7.2	34.0689 34.1027) 7	118.445 118.340	52 04
			Statio	on tab	le			
		<mark>⊙</mark> ⊐ Station_ic	l St	tation Nam	e (V _{s30} m/s)		
		1 2	Fa Santa M	ictor Buildii Ionica Cour	ng rthouse	380 215		
		Gro	und N	Notion	table		-	
	<mark>⊙⊐</mark> Moti	on_id ⊙ ⊐ Eve	ent_id (o⊐ Station	_id R _{jb} (km	1) P(GA (g)	
	1	1		1	2		0.84	
	2	2 1		2	14		0.28	
	3	2		1	20		0.61	
	4	2		2	30		0.32	

From Brandenberg et al. (2018)

ction: Flatfiles Final d current Vision Relational Databases Final tion

Benefits of a Relational Databases

a + ≈ ¢			AL ST	Sites	
In [7]:	1 import pymysql		Performance nvestigation	Site Name	Latitude
	2 import csv 3 import numpy 4 import xlrd		Juake	Urayasu Sea	35.638
	<pre>5 conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', pa 6 cursor = conn.cursor() 7</pre>	<pre>sswd='root', db='ngawest2')</pre>	event name	Front	
	<pre>8 MySQLCommand1 = "SELECT event_name FROM event WHERE event_id=1" 9 cursor.execute(MySQLCommand1) 10 event_name = cursor.fetchone()[0] 11 print("Event Name = " + event_name)</pre>		cude 🔋 👘 🔿	Test Site With File	80
	<pre>12 13 MySQLCommand2 = "SELECT pgs FROM motion INNER JOIN event ON motion. 14 cursor.execute(MySQLCommand2) 15 pgs = cursor.fetchone()[0] 16 print("PEA = " + str(bga))</pre>	event_id = event.event_id WHERE event.event_		Files	
	17 18 conn.commit() 19 conn.close() 20				
	<	>		Location Name	
E	vent Name: Helena, Montana-01 SA = 0.15702		Section State	Within spreading	
In []:	1		Submit	Field Tests	

Advanced tools (work on the cloud)

<u>"Smart" database</u>

Longitude

139.93356

Longitude Geology

Fill

139.934

80

Latitude

35.637925

Admin - Review - Log Out

Actions

Remarks

Users Teams

Reviewed?

No

No

Elevation

Remarks

Liquefaction:NGL ProjectFlatfilesFinalNeeds and currentVisionvsThe NGL DatabaseRemarkssituationVisionRelational DatabasesRemarks

The NGL Database

KPHP platform, GIS-based mapping tool, To be hosted at DesignSafe (UT NHERI site)

On-line beta version

http://uclageo.com/NGL/database/index.php

Final Remarks

The NGL Database

Graphical interface – User Experience Design

What constitutes a case history?

• Site information

Minimum requirements:

- Soil stratigraphy
- Ground water depth
- Details pertaining to soil type
- Penetration resistance or V_s

What constitutes a case history?

• Site information

- From NGA!

• Event information

What constitutes a case history?

- Site information
- Event information
- Ground performance

Minimum requirements:

- Written, mapped, or imaged observations
- Date/time of reconnaissance
- Location (lat/long)

The NGL Database Site Information

Event Information: Integration with NGA (Next-Generation Attenuation) products NGA data Integration with NGL

	Α	В	С	D	Е	F		HZ		IA	
1	Record Sequence Number	EQID	Earthquake Name	YEAR	MODY	HRMN	1	T7.50	0S	T8.00	005
2	1	0001	Helena, Montana-01	1935	1031	1838	8151	0.0	00247	0.0	00231
3	2	0002	Helena, Montana-02	1935	1031	1918	8152	0.0	03331	0.0	03473
4	3	0003	Humbolt Bay	1937	0207	0442	8153	0.0	00661	0.0	00639
5	4	0004	Imperial Valley-01	1938	0606	0242	8154	0.0	00486	0.0	00700
6	5	0005	Northwest Calif-01	1938	0912	0610	8155	0.0	01060	0.0	01011
7	6	0006	Imperial Valley-02	1940	0519	0437	8156	0.0	01217	0.0	01057
8	7	0007	Northwest Calif-02	1941	0209	0945	8157	0.0	00836	0.0	000772
9	8	0008	Northern Calif-01	1941	1003	1614	8158	0.0	08571	0.0	07123
10	9	0009	Borrego	1942	1021	1622	8159	0.0	11123	0.0	09935
11	10	0010	Imperial Valley-03	1951	0124	0717	8160	0.0	02338	0.0	01956
12	11	0011	Northwest Calif-03	1951	1008	0411	8161	0.1	34076	0.1	12643
13	12	0012	Kern County	1952	0721	1153	8162	0.2	98595	0.2	233477
14	13	0012	Kern County	1952	0721	1153	8163	0.0	02516	0.0	02555
15	14	0012	Kern County	1952	0721	1153	8164	0.0	04065	0.0	05418
10	40	6040	Kana Opumbi	Loco	0704	ALCO.	0465				
4	•	PSA_H2	2_d005 Sa_H2_d005 (+)			4	- F	PSA_H	2_d005	Sa_H2
Pead	9.7						Ready				

Data collection stored in a series of flatfiles

Pacific Earthquake Engineering Research Center

 NGA Data implemented as part of the NGL **Relational Database**

- Only fields relevant to NGL are included:
 - **Recording stations**
 - **Event information**
 - Fault-segments information (more than one for multi-fault ruptures)
 - 5% damped response spectra only

Sa_H2_

Ground Performance: High-Resolution Satellite Images

Bower Avenue Site after the 2011 Christchurch Earthquake (New Zealand)

Ground Performance: LiDAR Maps

Bower Avenue Site after the 2011 Christchurch Earthquake (New Zealand)

Ground Performance: Site Maps

Urayasu City Site after the 2011 Tohoku Earthquake (Japan)

Current Tasks: Database Population and Data Vetting

NGL Next-Generation Liquefaction Project Map	Upload Help	Admin - Review - Log Out
2 h and the	Review Sites	
Site Name	Latitude Longitude	Actions
Test Site With File	80 80	Review
	Martin State	
	N/22 BUG	L'and the state
5		USNRC
PEER Caltrans		

Review/Vetting: NGL Datbase Working Group (Brandenberg (chair), Moss, Franke, Cetin)

Final Remarks

- Urgent need for high-quality, transparent, case-history database
- The NGL relational database (being populated): open-source relational database
- Relational databases are more powerful than flatfiles (transformational shift from past practices!)
- The NGL database will include NGA data
- Future task: Completion of database population, supporting studies, model development

SSA-LACSC joint conference, Seismology of the Americas March 15 2018 Miami (FL)

NGL: An Open Source Global Database for Next-Generation of Liquefaction Assessment

Thank You!

Relevant References:

- Brandenberg S.J., Kwak D.Y., Zimmaro P., Bozorgnia Y., Kramer S.L., Stewart J.P. (2018). Next-Generation Liquefaction (NGL) Case History Database Structure. Fifth decennial Geotechnical Earthquake Engineering and Soil Dynamics Conference, Earthquake Engineering and Soil Dynamics Committee of the Geo-Institute. Austin, TX (USA), June 10-13.
- Stewart J.P., Kramer S.L., Kwak D.Y., Greenfield M.W., Kayen R.E., Tokimatsu K., Bray J.D., Beyzaei C.Z., Cubrinovski M., Sekiguchi T., Nakai S., Bozorgnia Y. (2016). PEER-NGL project: Open source global database and model development for the next-generation of liquefaction assessment procedures. Soil Dyn. Earthquake Eng., 91, 317–328.

 NEXT
 Project homepage:

 NEXT
 https://uclageo.com/NGL/

 Database (beta):

LIQUEFACTION http://uclageo.com/NGL/database/index.php

05/15/2018