### Proposed Approach to CENA Site Amplification

Gail Atkinson

with acknowledgement to many co-authors, especially Ghofrani, Hassani, Assatourians, and Braganza.

The model is a team effort reflecting their hard work over the last 7 years, involving hundreds of thousands of seismograph records and nearly as many hours





# SITE VARIABLES

F (X)

DESCRIBING THE DEPTH AND STIFFNESS OF THE DEPOSIT

• The average shear-wave velocity in the uppermost  $30 \text{ m} (V_{530})$ :

 $V_{s30} = 30/sum(d_i/V_i), i = 1:n$ 

• The fundamental frequency depends on both layer depth and its stiffness; may carry information on deeper part of the soil column, in comparison to  $V_{530}$ 

### Conclusions



- Fundamental frequency (f<sub>peak</sub>) is the most diagnostic descriptive variable for site response in central and eastern North America (CENA)
- V<sub>s30</sub> provides useful information on stiffness (if available) – it can also be a model parameter (but cannot replace fpeak)
- If V<sub>s30</sub> not available, stiffness based on surficial geology can be used

### Why peak frequency?



- In CENA, as in other regions such as Japan, we often have a soft layer over a much stiffer substratum (e.g. soil over glaciated bedrock), resulting in a predominant amplification peak at a fundamental frequency (fpeak)
  - This differs from California; California gradational velocity profiles result in broader, more subdued amplification curves, in which stiffness is diagnostic
- Peak frequency can be readily obtained from site H/V ratio - from earthquakes or microtremors (easier to get than V<sub>s30</sub>)
  - Can also be obtained by proxy (depth to bedrock)

# **Concluding Suggestions**

- Develop CENA site response model using both f<sub>peak</sub> and V<sub>s30</sub>
- Develop empirical/theoretical relationships to obtain f<sub>peak</sub> from V<sub>s30</sub> and vice versa on a regional basis; these can be default relationships to get one if only the other is known
- Include both f<sub>peak</sub> and V<sub>s30</sub> in future GMPEs
- Inclusion of both f<sub>peak</sub> and V<sub>s30</sub> will reduce sigma in CENA and also in other regions (e.g. NGA-subduction)

#### **Presentation Overview:**

- 1 How we reached this conclusion: background
- Studies of amplification from borehole and surface records in Japan (Ghofrani et al.)
  - H/V is a proxy for site response and can provide fpeak
  - Development of generic amplification model in fpeak
- Studies of H/V in CENA (Hassani et al., Braganza et al.)
  - fpeak is a better measure of site response than Vs30 for NGA-East database
  - use of fpeak in GMPEs in CENA can reduce sigma

#### **Presentation Overview:**

2 – Key points in the proposed CENA site amplification model

#### • f<sub>peak</sub> is the primary descriptive variable

- fpeak can be determined from H/V from earthquake records (seismograph stations), microtremor data (site surveys) or estimated from depth to bedrock (with greater uncertainty)
- V<sub>s30</sub> (or surficial geology) is a good supplementary parameter to reflect the effects of stiffness on peak amplitude
- If we know f<sub>peak</sub> and V<sub>s30</sub> we can define the site response curve vs. frequency very well (for linear response)
- Suggest future GMPE developments and site response models in CENA include both f<sub>peak</sub> and V<sub>s30</sub> as predictive variables

## **Background:** amplification in Japan based on surface and borehole records (Ghofrani et al., 2013)



#### K-NET & KiK-NET Data

 $(1006, 2000) + T_{a}h_{a}l_{m}$ 

| (1990-2009)         | $\pm 1010KU$           |
|---------------------|------------------------|
| agnitude range:     | 5.5-8.2 + 9.0          |
| epth range:         | 0-598 km               |
| events:             | 258                    |
| events per station: | 1-149                  |
| stations :          | 1724 (K-NET & KiK-NET) |
|                     |                        |



NIED K-NET NIED Kyoshin Network K-NET

#### H/V as a measure of site response

- Actual amplification can be calculated as S/B: the ratio of motion on surface to that input at borehole (corrected for depth effects)
- H/V (horizontal to vertical component ratio) matches S/B well in peak frequency, but tends to underpredict amplitude of peak response
  - We can predict S/B (site response) accurately if we use H/V and Vs30 (red line)
- We obtain stable averages for both S/B and H/V because each site has recorded many earthquakes



### H/V (proxy for site response) -grouped by Vs30 for sites in Japan



- In Japan, sites with high
   Vs30 are typically shallow
   soil (<30 m) over rock;</li>
   Vs30 is increasing as the relative proportion of stiff underlying material increases
- Vs30 is diagnostic of site response curve and its peak amplitude only if it is low (<250 m/s)</li>

### H/V for sites in Japan - grouped by peak frequency



- Site response curves clearly distinguishable by peak frequency
- The peak amplitude varies between ~0.42 to 0.59 log units (factor 2.6 to 3.9)

### Define a generic amplification curve, normalized by peak frequency



Considering the small variation of peak amplitudes for the averaged-H/V spectra, we shifted all curves to be centered at f/fpeak = 1, and defined a single generic curve

- The green squares are the average values and bars are ±1 standard deviation around mean.
- This is a standard H/ V curve, indicative of site response 12

# We can also group sites by f<sub>peak</sub> for other regions: NGA-West2 database



- H/V curves grouped by f<sub>peak</sub> for regions in NGA-W2 database
- These can also be normalized, and compared to standard H/V curve

#### Standard H/V curve for NGA-W2

- 2 types of regions
- Japan, Taiwan, China have H/V curve as given by the standard response curve developed for Japan
- California sites have similar shape curve but a bit broader, and peak amplitude is shifted down by 0.12 log units on average; southern California has enhanced frequency content to left of fpeak



Fig. 14. H/V standard curves in the selected regions, grouped into two classes: Class I: Japan, China, and Taiwan; and Class 2: Northern and Southern California. The smooth black curve in both panels is the standard curve defined based on data in Japan (Fig. 7). For California, an adjustment of – 0.12 (log units) is needed to bring the standard curve down to match the peak and the high-frequency end (dashed grey line). To mimic the bump at low frequencies relative to this shape in California, a further adjustment is needed (magenta line in Fig. 14).

More on H/V and site response: Studies in southern Ontario (Braganza et al.)

- varying sediment thicknesses from shallow (<20m) to deep (>100m) lead to a range of fpeak values (eastern Ontario has many bedrock sites)



#### Southern Ontario Database - overview



Data: (Atkinson et al.)

- Southern Ontario database (75%)
- Seismotoolbox.ca (6%)
- NGA-East database (19%)

- Geomean horizontal components
- 5% damped PSA [0.1-20 Hz],
  PGA, PGV)
- 1205 Records
- 62 events (Minimum 3 records)
- 84 stations (Minimum 3 records)

#### Southern Ontario Database – Data distribution



Data:

- Southern Ontario database (75%)
- Seismotoolbox.ca (6%)
- NGA-East database (19%)

Develop regional ground-motion prediction equation, based on generic GMPE model of Yenier and Atkinson (2015) (references a standard stochastic point-source model)

- $\ln Y = F_E + F_Z + F_\gamma + F_S + C$
- Source ( $F_E$ )  $F_E = F_M + F_{\Delta\sigma}$
- Anelastic attenuation (F<sub>V</sub>)
   YD<sub>rup</sub>
- Geometrical spreading (F<sub>Z</sub>)
  bilinear b<sub>1</sub>, b<sub>2</sub>, R<sub>t</sub> =
- Site effects ( $F_S$

Calibration factor (C)

Generic GMPE – use to determine site terms for stations in southern Ontario, relative to bedrock



Simulation-based Empirical

 Assume the same F<sub>M</sub> and F<sub>Z</sub> Functions used for California and for CENA (NGA-W2 and NGA-east)

Define a functional form to describe the observed residual trends (e.g. log Residuals = F(f,r))

- Generalized inversion (Andrews, 1986)
- Determine source term for each event, region-specific anelastic attenuation (function of frequency), and site term for each station relative to reference
- Reference site condition  $V_{S30} \sim 2000$  m/sec; constrain such that the average site term over all hard rock sites = 0.

#### Southern Ontario GMPE



20

## Site Amplification ( $F_S$ ) relative to hard rock (Vs30~2000 m/s) (linear); matches H/V



21

#### H/V shapes in eastern Canada

Similar in shape to standard curves for Japan



### H/V shapes in eastern Canada by site type

- Amplitude varies with stiffness of surficial soil deposit
- Note these are linear amplification factors relative to rock (Vs~2000m/s)



## H/V shapes in eastern Canada similar whether obtained from earthquake recordings or microtremor (1 hour Tromino survey)

- Top figure is H/V from earthquake records at ELFO (64m of till)
- Lower figure is H/V from Tromino survey (same f<sub>peak</sub> but higher A<sub>peak</sub>)



24



Studies of site response variables in CENA (NGA-East database):

Note that Vs30 is measured for only about 6% of sites, for the rest it is estimated using proxies

#### Hassani et al.

Figure 1. Geographic distribution of study events and stations. The color version of this figure is available only in the electronic edition.



Figure 2. (a) Magnitude-distance distribution of the database, by National Earthquake Hazards Reduction Program (NEHRP) site classes and (b) histogram of number of stations in each site class. The color version of this figure is available only in the electronic edition.

#### Single layer model:



Expected relationship between  $f_{peak}$  and  $V_{s30}$  can be calculated for a given site profile.

Assume crustal velocity profile of Frankel et al., 1997 for rock profile, with a single softer layer sitting on top



Figure 4. Adopted shear-wave velocity ( $V_s$ ) profile as a function of depth (Z) for a single-layer model with constant velocity of  $V_L = 250$  m/s, thickness of  $d_L = 50$  m, and  $V_R = 2000$  m/s.

#### Predicted Relationship between f<sub>peak</sub> vs. V<sub>S30</sub>

Relationship between  $V_{s30}$  and  $f_{peak}$  for different layer velocities ( $V_L$ ) and rock velocities ( $V_R$ ), as calculated from square root impedance ratio method (SRI) (Joyner et al., 1981) Layer thickness 2m to 200m. Q=15



27

# Observed CENA $f_{peak}$ vs. $V_{S30}$ : We can predict $V_{s30}$ from $f_{peak}$ (better than other proxies)



Standard deviation is equal to 0.14 in log10 units, significantly smaller than for other proxies used in NGA-East database

## Relationship between V<sub>s30</sub> and f<sub>peak</sub>

- We can use f<sub>peak</sub> (measured from H/V) as a proxy to estimate V<sub>s30</sub> for stations in the NGA-East database having no measured V<sub>s30</sub>
- f<sub>peak</sub> works better than other proxies to estimate V<sub>s30</sub> (if we have measureable f<sub>peak</sub>)
- But is V<sub>s30</sub> the most appropriate site response measure?
- Can we use generic models from the west to estimate site response if we know V<sub>s30</sub>?

# Applicability of the NGA-West2 site effects model to sites in CENA (Hassani et al)

- No V<sub>S30</sub>-based regional site amplification model for sites in CENA.
- GMPE modelers either used western-based site effects models or developed their own  $V_{S30}$ -based model (few measured  $V_{S30}$ ).
- In CENA,  $V_{S30}$  may not be the best choice of site variable.
- Explore the applicability of the NGA-West2 site effects model for sites in CENA.

### Site terms vs. f<sub>peak</sub>

Residual Analysis of site terms (by station) relative to a GMPE

- Selected CENA Ground-motion prediction equation model (GMPE) (Yenier and Atkinson, 2015; YA15)
- NGA-West2 site amplification model (Seyhan and Stewart, 2014; SS14) (V<sub>S30</sub>-based model)

$$log(re_{ij,B/C}) = log(obs_{ij,B/C}) - log(pre_{ij,B/C})$$
  
Residual Observed adj Predicted for  
to B/C (SS14) B/C (YA15)

$$\log(re_{ij,B/C}) = S_j + \eta_i + \varepsilon_{ij}$$

**S**: Residual Site term  $\eta$ : Between-event term  $\epsilon$ : Within-event term

Abrahamson and Youngs (1992)

#### Site terms (individual stations) vs. $f_{peak}$ for PSA at specified frequency



East • Central + Measured  $V_{S30}$  Average (SS14 site adjustment) ---- Average (no site adjustment)

32



#### Overall trends in site terms (PSA residual at specified freq) vs. f<sub>peak</sub> -trends in residuals track H/V

33

### Correlation between site terms and amplification calculated from Vs30 (with SS14 model)



Figure 7. Total site terms (no site adjustment) are plotted versus SS14 site-effects terms as obtained using the reported  $V_{S30}$  values from the NGA-East database (circles). Correlation coefficients are also shown for the selected frequencies. The color version of this figure is available only in the electronic edition.

## Correlation between site terms and amplification calculated as H/V



Figure 8. Total site terms (no site adjustment) are plotted versus the amplitude of the H/V spectral ratio, for four selected frequencies. Correlation coefficients are also shown. The color version of this figure is available only in the electronic edition.

35

#### Correlation coefficients comparison

H/V shows stronger correlation with site terms than does amplification calculated from SS14 model using Vs30

So maybe our model should use H/V – specifically f<sub>peak</sub> from H/V



- Calculate site terms relative to two reference conditions:
  - Yenier and Atkinson (2015; YA15) model for B/C site conditions
  - Atkinson et al., (2015) model for hard rock ( $V_{S30} \sim 2000 \text{ m/s}$ ) (A sites)

$$log(re_{ij}) = S_j + \eta_i + \varepsilon_{ij}$$
  $\sigma = \sqrt{\tau^2 + \varphi^2}$ 

#### S: Site term

 $\sigma$ : total variability

 $\boldsymbol{\tau}$ : Between – event variability  $\boldsymbol{\varphi}$ : Within – event variability

# Site term at selected frequencies wrt B/C vs. $f_{\text{peak}}$ – dashed line shows model



Yenier and Atkinson (2015; YA15) model for B/C site conditions.

# Site term at selected frequencies wrt A vs. $f_{peak}$ – dashed line shows model



Atkinson et al. (2015) model for A site conditions (Vs30~2000 m/s)

#### General shape for f<sub>peak</sub>-based site amplification model



#### Plot of f<sub>peak</sub>-based site amplification model: relative to hard-rock (left) and B/C (right)



Curves show amplification for different values of site f<sub>peak</sub>



#### Summary

- H/V is a useful site response proxy; peak of H/V is the best single site variable we have found
- f<sub>peak</sub> can be used a V<sub>S30</sub> proxy; results in significantly smaller standard deviation relative to other proxies used in NGA-E
- f<sub>peak</sub> is a better site response predictor for CENA sites than an NGA-West2 site effects model based on V<sub>s30</sub>
- Empirical f<sub>peak</sub>-based site amplification model proposed for sites in CENA.

#### A few last thoughts

- For many sites we do not know f<sub>peak</sub>
- f<sub>peak</sub> can be readily obtained (low cost) from microtremor measurements
- Alternatively it can be estimated from depth to bedrock (using either empirical or theoretical relations) – as shown below
- We can also develop regional or geology-specific relations between fpeak and  $V_{s30}$  so that if we know one we can get a default value for the other



#### Effect of uncertainty in f<sub>peak</sub>

- If f<sub>peak</sub> has been estimated from depth to bedrock, the error in f<sub>peak</sub> needs to be considered in site amplification function
- This uncertainty widens the response curve; effect can be

estimated by simple Monte Carlo simulation



45

# Comparison to NGA-W2 amplification, considering uncertain $f_{peak}$



▲ Figure 10. The three proposed generic sediment amplification functions for eastern Canada and the corresponding functions for California (Seyhan and Stewart, 2012) assuming nominal values of  $V_{S30}$  of 1000 m/s, 300 m/s and 150 m/s for till, sand/clay, and soft soil, respectively. Light shades refer to very soft sediment/fill; intermediate shade refer to sand/clay; and dark shade refer to till. The color version of this figure is available only in the electronic edition.

- Uncertain f<sub>peak</sub> broadens response peak and makes it more similar to a typical California model
- But the peak amplification, at least for sites in eastern Canada, is still shifted to significantly-higher frequencies relative to California
- Amplifications shown are for low levels of shaking (linear)

# **Concluding Suggestions**

- Develop CENA site response model using both f<sub>peak</sub> and V<sub>s30</sub>
- Develop empirical/theoretical relationships to obtain f<sub>peak</sub> from V<sub>s30</sub> and vice versa on a regional basis; these can be default relationships to get one if only the other is known
- Include both f<sub>peak</sub> and V<sub>s30</sub> in future GMPEs
- Inclusion of both f<sub>peak</sub> and V<sub>s30</sub> will reduce sigma in CENA and also in other regions (e.g. NGA-subduction)

### References

- Atkinson, G., B. Hassani, A.Singh, E. Yenier and K. Assatourians (2015). Estimation of moment magnitude and stress parameter from ShakeMap ground-motions. Bull. Seism. Soc. Am., 105,2572-2588.
- Braganza, S., G. Atkinson, H. Ghofrani, B. Hassani, L. Chouinard, P. Rosset, D. Motazedian and J. Hunter (2016). Modeling site amplification in eastern Canada on a regional scale. Seism. Res. L., 87, 1008-1021.
- Ghofrani, H. and G. Atkinson (2014). Site condition evaluation using horizontal-to-vertical spectral ratios of earthquakes in the NGA-West2 and Japanese databases. J. Soil Dyn. And Earthq. Eng., 67, 30-43. doi: 10.1016/j.soildyn.2014.08.015.
- Ghofrani, H., G. Atkinson and K. Goda (2013). Implications of the 2011 M9.0 Tohoku Japan earthquake for the treatment of site effects in large earthquakes. Bull. Earthq. Eng., **11**, 171-203.
- Hassani, B. and G. Atkinson (2016). Applicability of the site fundamental frequency as a V<sub>s30</sub> proxy for central and eastern North America, Bull. Seism. Soc. Am., **106**, 653-664.
- Hassani, B. and G. Atkinson (2016). Applicability of the NGA-West2 site-effects model for central and eastern North America, Bull. Seism. Soc. Am., **106**, 1331-1341.
- Yenier, E. and G. Atkinson (2015b). A regionally-adjustable generic GMPE based on stochastic pointsource simulations. Bull. Seism. Soc. Am., **105**, 1989-2009.